Introduction

The tables on this page were originally published in ELECTRONIC EXPERIMENTERS HANDBOOK, 1980, Page 70. The author is listed as R. E. MARTIN. I have adjusted the tables a bit, to make them easier to read. I also added the small calculator in the Optimum Q Inductors section. The calculator helps illustrate the formula given in the paragraph below it. Just enter your values and click anywhere on the page. - K7MEM

Optimum Q Inductors
WireDiameter & Length (inches)
AWG1/81/43/81/25/83/41
16T6 Turns8 Turns10 Turns12 Turns16 Turns
L*0.233 µH0..552 µH1.08 µH1.86 µH4.41 µH
18T5 Turns8 Turns10-1/2 Turns13 Turns15-1/2 Turns21 Turns
L*0.108 µH0.414 µH0.950 µH1.82 µH3.11 µH7.60 µH
20T3 Turns6-1/2 Turns10 Turns13 Turns16-1/2 Turns19-1/2 Turns26 Turns
L*0.0194 µH0.182 µH0.647 µH1.46 µH2.93 µH4.92 µH11.7 µH
22T4 Turns8 Turns12 Turns16-1/2 Turns20 Turns24-1/2 Turns33 Turns
L*0.0345 µH0.276 µH0.931 µH2.35 µH4.31 µH7.76 µH18.8 µH
24T5 Turns10 Turns15 Turns20-1/2 Turns25 Turns30-1/2 Turns41 Turns
L*0.0539 µH0.431 µH1.46 µH3.62 µH6.74 µH12.0 µH29.0 µH
26T6-1/2 Turns13 Turns19-1/2 Turns25-1/2 Turns32-1/2 Turns38-1/2 Turns51 Turns
L*0.091 µH0.728 µH2.46 µH5.61 µH11.4 µH19.2 µH44.8 µH
28T8 Turns16 Turns24 Turns32 Turns40 Turns48 Turns64 Turns
L*0.138 µH1.10 µH3.72 µH8.83 µH17.2 µH29.8 µH70.6 µH
30T10 Turns20 Turns30 Turns40 Turns50 Turns60 Turns80 Turns
L*0.215 µH1.72 µH5.82 µH13.8 µH27.0 µH46.5 µH110 µH
K0.002150.004310.006470.008620.01080.01290.0172
*Inductance, L, is in microhenries
Calculate Inductance, L = K×T2
Number of Turns
K Value
Inductance (uH) 1.08 uH
Calculate Turns, T = √(L/K)
Inductance µH
K Value
Number of Turns 10 Turns

Optimum Q is achieved in an inductor when its length and diameter are equal. This table will serve as a guide when designing high-Q inductors for R-F circuits. It gives maximum turns and inductance for various wire sizes when close-wound in a single layer.

Higher Q's will be obtained if the turns are spaced at one wire diameter. This results in half the turns and one quarter of the inductances listed in the table. Should an intermediate inductance or number of turns be desired, the factor, K, at the bottom of each column can be used for calculation from the formula L = K×T2.

Small Inductors
WireResistor Size WireResistor Size
AWG1/4W1/2W1W2W AWG1/4W1/2W1W2W
20T3 Turns7 Turns11 Turns14 Turns 30T9 Turns19 Turns32 Turns41 Turns
L*0.013 µH0.097 µH0.32 µH0.63 µH L*0.12 µH0.72 µH2.7 µH5.4 µH
22T4 Turns8 Turns13 Turns17 Turns 32T11 Turns22 Turns39 Turns50 Turns
L*0.023 µH0.13 µH0.45 µH0.92 µH L*0.12 µH0.72 µH2.7 µH5.4 µH
24T5 Turns10 Turns17 Turns22 Turns 34T14 Turns28 Turns49 Turns62 Turns
L*0.036 µH0.20 µH0.76 µH1.5 µH L*0.28 µH1.6 µH6.3 µH12 µH
26T6 Turns12 Turns21 Turns27 Turns 36T18 Turns34 Turns60 Turns77 Turns
L*0.051 µH0.29 µH1.2 µH2.3 µH L*0.46 µH2.3 µH9.5 µH19 µH
28T8 Turns15 Turns26 Turns33 Turns *Inductance, L, is in microhenries
L*0.092 µH0.45 µH1.8 µH3.5 µH

When small inductors are needed, for RF chokes or HF filter networks, it's frequently convenient to wind them on composition (carbon) resistors. The table shows inductances for various wire sizes when close-wound on common resistor bodies. The resistor value should be above 4.7 KΩ for the low-value inductances and above 47 KΩ for the higher values, unless low Q is desired.

The number of turns listed leaves a little space at the end of the resistor body to file small notches in order to guide the coil wire down to the resistor lead while not allowing the coil turns to fall off the ends. Do not use wire-wound resistors.